
pmid: 17933509
Eukariotic chromosomes occupy distinct territories in the cell nucleus. These territories intermingle little with other chromosomes. Nevertheless, several contacts between different chromosomal loci have been documented, a phenomenon called chromosome kissing. Some of these contacts may arise simply because of preferred chromosome neighborhoods and of the sharing of transcriptional machineries, while others seem to have exquisite regulatory functions. Recent approaches that allow to detect chromosome kissing events in an unbiased manner suggest that chromatin folding is such that cis contacts with neighboring elements are most frequent, but contacts with remote parts of the same chromosome or with different chromosomes are possible. These contacts are modulated by specific chromatin features of each locus, and they may play important roles in the regulation of gene expression. Chromosome kissing events may also be at the origin of chromosomal rearrangements.
Transcription, Genetic, Chromosomes, Human, Humans, [SDV.GEN] Life Sciences [q-bio]/Genetics, Gene Silencing, Genomics, Chromosome Positioning, Chromatin, Translocation, Genetic
Transcription, Genetic, Chromosomes, Human, Humans, [SDV.GEN] Life Sciences [q-bio]/Genetics, Gene Silencing, Genomics, Chromosome Positioning, Chromatin, Translocation, Genetic
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 68 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
