
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>handle: 1854/LU-429244 , 1854/LU-406341
We consider lower probabilities on finite possibility spaces as models for the uncertainty about the state. These generalizations of classical probabilities can have some interesting properties; for example: k-monotonicity, avoiding sure loss, coherence, permutation invariance. The sets formed by all the lower probabilities satisfying zero or more of these properties are convex. We show how the extreme points and rays of these sets-the extreme lower probabilities-can be calculated and we give an illustration of our results.
Non-additive measures, Mathematics and Statistics, Extreme points, Imprecise probabilities, imprecise probabilities, extreme points, Lower probabilities, Combinatorial problems
Non-additive measures, Mathematics and Statistics, Extreme points, Imprecise probabilities, imprecise probabilities, extreme points, Lower probabilities, Combinatorial problems
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
