Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Food Chemistryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Food Chemistry
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Polyphenol mediated non-enzymatic browning and its inhibition in apple juice

Authors: Zijing, Xu; Zihan, Yang; Junfu, Ji; Yao, Mou; Fang, Chen; Zhiyong, Xiao; Xiaojun, Liao; +2 Authors

Polyphenol mediated non-enzymatic browning and its inhibition in apple juice

Abstract

Non-enzymatic browning is a severe problem in juice industry. Here, polyphenol mediated non-enzymatic browning and its inhibition in apple juice were investigated. Epicatechin (R = -0.83), catechin (CAT, R = -0.79), chlorogenic acid (CGA, R = 0.65) and caffeic acid (CAF, R = 0.65) were strongly correlated with browning. CAT and chlorogenic acid quinone (CGAQ) decreased during storage with the fastest CAT degradation rate (kCGA-enriched = 1.97 × 10-3 mg·L-1·h-1 and kCAT-enriched = 2.09 × 10-3 mg·L-1·h-1) at the initial stage, but CGA and catechin quinone (CATQ) hardly changed. It was possible that CGAQ oxidized CAT at initial stage, leading to the generation of CATQ but less browning. Then the formed CATQ reacted with CAT through the complex reactions, leading to the accumulation of yellow polymers, which might explain why browning increased faster during the secondary and tertiary stages. In addition, glutathione could effectively inhibit browning compared to ascorbic acid and oxygen blocking methods.

Related Organizations
Keywords

Malus, Quinones, Polyphenols, Chlorogenic Acid, Catechin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!