
pmid: 36228474
Non-enzymatic browning is a severe problem in juice industry. Here, polyphenol mediated non-enzymatic browning and its inhibition in apple juice were investigated. Epicatechin (R = -0.83), catechin (CAT, R = -0.79), chlorogenic acid (CGA, R = 0.65) and caffeic acid (CAF, R = 0.65) were strongly correlated with browning. CAT and chlorogenic acid quinone (CGAQ) decreased during storage with the fastest CAT degradation rate (kCGA-enriched = 1.97 × 10-3 mg·L-1·h-1 and kCAT-enriched = 2.09 × 10-3 mg·L-1·h-1) at the initial stage, but CGA and catechin quinone (CATQ) hardly changed. It was possible that CGAQ oxidized CAT at initial stage, leading to the generation of CATQ but less browning. Then the formed CATQ reacted with CAT through the complex reactions, leading to the accumulation of yellow polymers, which might explain why browning increased faster during the secondary and tertiary stages. In addition, glutathione could effectively inhibit browning compared to ascorbic acid and oxygen blocking methods.
Malus, Quinones, Polyphenols, Chlorogenic Acid, Catechin
Malus, Quinones, Polyphenols, Chlorogenic Acid, Catechin
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 35 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
