
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Alginates are comprised of mannuronic (M) and guluronic acid (G) and have been shown to inhibit enzyme activity. Pancreatic lipase is important in dietary triacylglycerol breakdown; reducing pancreatic lipase activity would reduce triacylglycerol breakdown resulting in lower amounts being absorbed by the body. Lipase activity in the presence of biopolymers was assessed by enzymatic assay using natural and synthetic substrates. Alginate inhibited pancreatic lipase by a maximum of 72.2% (±4.1) with synthetic substrate (DGGR) and 58.0% (±9.7) with natural substrate. High-G alginates from Laminaria hyperborea seaweed inhibited pancreatic lipase to a significantly higher degree than High-M alginates from Lessonia nigrescens, showing that inhibition was related to alginate structure. High-G alginates are effective inhibitors of pancreatic lipase and are used in the food industry at low levels. They could be included at higher levels in foods without altering organoleptic qualities, potentially reduce the uptake of dietary triacylglycerol aiding in weight management.
Alginates, Hexuronic Acids, Alginate, Lipase, Seaweed, Article, Analytical Chemistry, Kinetics, Glucuronic Acid, Weight management, Obesity, Enzyme Inhibitors, Pancreas, Inhibition, Food Science
Alginates, Hexuronic Acids, Alginate, Lipase, Seaweed, Article, Analytical Chemistry, Kinetics, Glucuronic Acid, Weight management, Obesity, Enzyme Inhibitors, Pancreas, Inhibition, Food Science
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 98 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
