Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fire Safety Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fire Safety Journal
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Long wavelength video detection of fire in ship compartments

Authors: Jeffrey C. Owrutsky; Christian P. Minor; Daniel A. Steinhurst; Frederick W. Williams; Daniel T. Gottuk; Susan L. Rose-Pehrsson;

Long wavelength video detection of fire in ship compartments

Abstract

Abstract This paper describes progress using filtered, long wavelength video image-based detection (LWVD) of events in laboratory tests and full scale fire testing within the Volume Sensor Program at the U.S. Naval Research Laboratory (NRL). This effort toward developing a real-time, remote sensing detection system utilizes video image detection (VID) systems based on cameras that operate in the visible region, which were developed for detecting smoke and have recently been adapted to detecting fire. However, VID systems are not effective at detecting fire outside the direct line of sight of the camera. Our studies demonstrate that long wavelength imaging achieves effective detection of reflected flame emission compared to visible video images. A system that combines visible and long wavelength image capabilities may be more accurate and sensitive than either alone. Our LWVD approach exploits the long wavelength response of standard CCD arrays used in many cameras. A long pass filter (typically in the range 700–900 nm) increases the contrast for flaming and hot objects and suppresses the normal video image of the space, thereby effectively providing a degree of thermal imaging. There is more emission from hot objects in this spectral region than in the visible region (

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!