Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LAReferencia - Red F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2010
License: CC BY NC ND
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Article . 2010
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fungal Genetics and Biology
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Botrytis cinerea aspartic proteinase family

Authors: ten Have, A.; Espino, J.J.; Dekkers, E.; Van Sluyter, S.; Brito, N.; Kay, J.; González, C.; +1 Authors

The Botrytis cinerea aspartic proteinase family

Abstract

The ascomycete plant pathogen Botrytis cinerea secretes aspartic proteinase (AP) activity. Functional analysis was carried out on five aspartic proteinase genes (Bcap1-5) reported previously. Single and double mutants lacking these five genes showed neither a reduced secreted proteolytic activity, nor a reduction in virulence and they showed no alteration in sensitivity to antifungal proteins purified from grape juice. Scrutiny of the B. cinerea genome revealed the presence of nine additional Bcap genes, denoted Bcap6-14. The product of the Bcap8 gene was found to constitute up to 23% of the total protein secreted by B. cinerea. Bcap8-deficient mutants secreted approximately 70% less AP activity but were just as virulent as the wild-type strain. Phylogenetic analysis showed that Bcap8 has orthologs in many basidiomycetes but only few ascomycetes including the biocontrol fungus Trichoderma harzanium. Potential functions of the 14 APs in B. cinerea are discussed based on their sequence characteristics, phylogeny and predicted localization.

Countries
Netherlands, Argentina
Keywords

Antifungal Agents, Aspartic Acid Proteases, Bioinformatics, Evolution, Genes, Fungal, Molecular Sequence Data, Proteinase, Plant Pathogen, Fungal Proteins, Cytosol, Gray Mould, https://purl.org/becyt/ford/1.6, Amino Acid Sequence, Cloning, Molecular, gene, trichoderma-harzianum, https://purl.org/becyt/ford/1, genome, Phylogeny, Plant Diseases, Plant Proteins, porcine pepsin, proteomic analysis, cleavage sites, peptidases, cell-wall, Multigene Family, candida-albicans, saccharomyces-cerevisiae, Botrytis, Sequence Alignment, Gene Deletion

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 10%
Top 10%
Top 10%
Green