
Agent-based models (ABMs) are increasingly recognized as valuable tools in modelling human-environmental systems, but challenges and critics remain. One pressing challenge in the era of Big Data and given the flexibility of representation afforded by ABMs, is identifying the appropriate level of complicatedness in model structure for representing and investigating complex real-world systems. In this paper, we differentiate the concepts of complexity (model behaviour) and complicatedness (model structure), and illustrate the non-linear relationship between them. We then systematically evaluate the trade-offs between simple (often theoretical) models and complicated (often empirically-grounded) models. We propose using pattern-oriented modelling, stepwise approaches, and modular design to guide modellers in reaching an appropriate level of model complicatedness. While ABMs should be constructed as simple as possible but as complicated as necessary to address the predefined research questions, we also warn modellers of the pitfalls and risks of building mid-level models mixing stylized and empirical components. We clarify the terms complexity and complicated in the context of ABM.We comprehensively discuss pros and cons of simple and complicated ABMs.We identify challenges and pitfalls for simple and complicated ABMs.We provide recommendations and good practices for dealing with complicatedness.
330, 710
330, 710
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 147 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
