Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Resear...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Research
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Immunity and electromagnetic fields

Authors: Piotr Piszczek; Karolina Wójcik-Piotrowicz; Krzysztof Gil; Jolanta Kaszuba-Zwoińska;

Immunity and electromagnetic fields

Abstract

Despite many studies, the question about the positive or negative influence of electromagnetic fields (EMF) on living organisms still remains an unresolved issue. To date, the results are inconsistent and hardly comparable between different laboratories. The observed bio-effects are dependent not only on the applied EMF itself, but on many other factors such as the model system tested or environmental ones. In an organism, the role of the defense system against external stressors is played by the immune system consisting of various cell types. The immune cells are engaged in many physiological processes and responsible for the proper functioning of the whole organism. Any factor with an ability to cause immunomodulatory effects may weaken or enhance the response of the immune system. This review is focused on a wide range electromagnetic fields as a possible external factor which may modulate the innate and/or adaptive immunity. Considering the existing databases, we have compiled the bio-effects evoked by EMF in particular immune cell types involved in different types of immune response with the common mechanistic models and mostly activated intracellular signaling cascade pathways.

Country
Poland
Keywords

Electromagnetic Fields, Immune System, Adaptive Immunity, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?