
The aim of this paper is to introduce a general model of quantum computation, the quantum calculus: both unitary transformations and projective measurements are allowed; furthermore a complete classical control, including conditional structures and loops, is available. Complementary to its operational semantics, we introduce a pure denotational semantics for the quantum calculus. Based on probabilistic power domains [Jones, C. and G. D. Plotkin, A probabilistic powerdomain of evaluations, in: LICS, 1989, pp. 186-195. URL http://homepages.inf.ed.ac.uk/gdp/publications/Prob_Powerdomain.pdf], this pure denotational semantics associates with any description of a computation in the quantum calculus its action in a mathematical setting. Adequacy between operational and pure denotational semantics is established. Additionally to this pure denotational semantics, an observable denotational semantics is introduced. Following the work by Selinger, this observable denotational semantics is based on density matrices and super-operators. Finally, we establish an exact abstraction connection between these two semantics.
Theoretical Computer Science, Computer Science(all)
Theoretical Computer Science, Computer Science(all)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
