
In the conventional formulation of the Timoshenko beam theory bending and shear deflection cannot be determined uniquely. Recently, an alternative formulation which deals with total deflection and bending deflection has been developed with unique results. In the present paper a new beam theory, taking coupling between flexural and in-plane shear vibrations into account, is derived by employing Hamilton’s principle. First, uncoupled flexural and in-plane shear vibrations are considered. Then, coupling of vibrations, manifested in the case of geometric boundary conditions, is realized in a physically transparent way. Accuracy is confirmed by 2D FEM vibration analysis of illustrative examples. The proposed formulation is superior to the known first order shear deformation beam theories.
New deformation concept, Flexural and in-plane shear vibrations, Modified Timoshenko beam theory; First order shear deformation theory; New deformation concept; Flexural and in-plane shear vibrations, Modified Timoshenko beam theory, First order shear deformation theory
New deformation concept, Flexural and in-plane shear vibrations, Modified Timoshenko beam theory; First order shear deformation theory; New deformation concept; Flexural and in-plane shear vibrations, Modified Timoshenko beam theory, First order shear deformation theory
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
