<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract In this paper we introduce the concept of k-flow-critical graphs. These are graphs that do not admit a k-flow but such that any smaller graph obtained from it by contraction of edges or of pairs of vertices is k-flowable. Any minimal counter-example for Tutte's 3-Flow and 5-Flow Conjectures must be 3-flow-critical and 5-flow-critical, respectively. Thus, any progress towards establishing good characterizations of k-flow-critical graphs can represent progress in the study of these conjectures. We present some interesting properties satisfied by k-flow-critical graphs discovered recently.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |