
Abstract This work is a further step to develop a finite element model to simulate localized corrosion of aluminum alloys driven by micro-galvanic effects. The focus herein is to explore the effect of density (porosity and tortuosity) of Al(OH)3 precipitates generated both on the electrode surface and in the liquid phase. Two coupled processes are identified and discussed, both influencing the local pH: the Al3+ dissolution from the electrode surface, and the steric hindrance effects on mass transport of species between the bulk solution and the anolyte next to the corroding surface. With the densest precipitate investigated, Al3+ dissolution is more effectively blocked and the mass transport largely hindered of Al3+ ions leaving the electrode surface. With increasing porosity of the precipitate, Al3+ dissolution is enhanced, also the mass transport of species in the electrolyte. The most severe localized acidification inside the occluded volume occurs when the density, namely ascribed by porosity, of precipitate is at an intermediate level with ec = 0.01. In qualitative agreement with experimental observations, this work highlights the importance of corrosion product density on the progress of localized corrosion.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 28 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
