Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrochimica Actaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electrochimica Acta
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Numerical simulation of micro-galvanic corrosion of Al alloys: Effect of density of Al(OH)3 precipitate

Authors: Litao Yin; Wenchao Li; Yongchao Wang; Ying Jin; Jinshan Pan; Christofer Leygraf;

Numerical simulation of micro-galvanic corrosion of Al alloys: Effect of density of Al(OH)3 precipitate

Abstract

Abstract This work is a further step to develop a finite element model to simulate localized corrosion of aluminum alloys driven by micro-galvanic effects. The focus herein is to explore the effect of density (porosity and tortuosity) of Al(OH)3 precipitates generated both on the electrode surface and in the liquid phase. Two coupled processes are identified and discussed, both influencing the local pH: the Al3+ dissolution from the electrode surface, and the steric hindrance effects on mass transport of species between the bulk solution and the anolyte next to the corroding surface. With the densest precipitate investigated, Al3+ dissolution is more effectively blocked and the mass transport largely hindered of Al3+ ions leaving the electrode surface. With increasing porosity of the precipitate, Al3+ dissolution is enhanced, also the mass transport of species in the electrolyte. The most severe localized acidification inside the occluded volume occurs when the density, namely ascribed by porosity, of precipitate is at an intermediate level with ec = 0.01. In qualitative agreement with experimental observations, this work highlights the importance of corrosion product density on the progress of localized corrosion.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!