
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The direct equivalence between ecology and thermodynamics has not been attained despite accepted thermodynamic features of the ecosystem. This article explores the homeomorphism between ecology and statistical mechanics by analysis of ruderal vegetation. In conventional thermostatistical algorithm, the pro-kinetic effect of temperature on molecules was replaced by the anti-kinetic effect of species diversity on biological individuals. The existence of an ecological equivalent of the thermodynamic Boltzmann constant was empirically verified. From the relationship of this constant with biocenological variables, we derived a probable ecological equation of state under stationary and quasi-stationary conditions. This equation of state is homeomorphic with regard to the ideal gas state equation, and it is useful to infer the value of some biocenological parameters whose direct measurement is difficult, as biomass, energy and dispersal. According to these results, ecosystem assessment from conventional thermostatistics is plausible and empirically verifiable. This approach offers useful analytical tools for the conservation and restoration of ecosystems.
Fundación Canaria Rafael Clavijo
ecuación de estado, termodinámica, energía trófica, Biodiversity, constante de Boltzman, Trophic energy, biodiversidad, State equation, Thermodynamics, Steady ecosystem, Boltzmann constant, ecosistema invariable
ecuación de estado, termodinámica, energía trófica, Biodiversity, constante de Boltzman, Trophic energy, biodiversidad, State equation, Thermodynamics, Steady ecosystem, Boltzmann constant, ecosistema invariable
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 41 |