Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publikationenserver ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CONICET Digital
Article . 2018
License: CC BY NC SA
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Earth-Science Reviews
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Geochronology of shear zones – A review

Authors: Sebastián Oriolo; Klaus Wemmer; Pedro Oyhantçabal; Haakon Fossen; Bernhard Schulz; Siegfried Siegesmund;

Geochronology of shear zones – A review

Abstract

Abstract Shear zones play a major role in the deformation of the crust at a variety of scales, as expressions of strain localization during orogeny and rifting, and also as reactivated structures. They influence the geometry and evolution of orogenic belts and rifts, crustal rheology, magma ascent and emplacement, and fluid flow. Consequently, assessing the timing of shear zone activity is crucial to reconstruct the tectonometamorphic evolution of the lithosphere. The interpretation of thermochronologic data from shear zones is, however, not straightforward. In the first place, closure temperatures depend on a number of factors (grain size, cooling rate, mineral composition and pressure, among others). On the other hand, deformation-related processes such as dynamic recrystallization, neocrystallization and fluid circulation seem to be crucial for isotopic systems and, thus, the obtained ages cannot be solely interpreted as a function of temperature in sheared rocks. For this reason, geochronologic data from shear zones might not only record cooling below closure temperature conditions but may also be affected by neo- or recrystallization, fluid-assisted deformation and inheritance of the protolith age(s). In order to robustly reconstruct P-T-e-t paths of long-term crustal-scale shear zones, structural, microstructural and petrologic data from mylonites need to be integrated with ages from different thermochronometric systems. In addition, geochronologic data from associated intrusions and adjacent blocks can provide further irreplaceable constraints on the timing of deformation and its regional implications. One of the most challenging aspects that future lines of investigation should analyze is the quantitative evaluation of so far poorly explored aspects of isotopic diffusion, particularly the coupling with deformation processes, based on natural, theoretical and experimental data. Future works should also investigate the role of strain partitioning and localization processes in order to constrain the timing of deformation in different parts of a shear zone or in different branches of anastomosing shear zone networks.

Keywords

THERMOCHRONOLOGY, CLOSURE TEMPERATURE, https://purl.org/becyt/ford/1.5, ISOTOPIC DIFFUSION, STRAIN LOCALIZATION, MYLONITES, DEFORMATION MECHANISMS, https://purl.org/becyt/ford/1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 1%
Top 10%
Top 1%
Green