
handle: 20.500.11769/614449
In Bayesian signal processing, all the information about the unknowns of interest is contained in their posterior distributions. The unknowns can be parameters of a model, or a model and its parameters. In many important problems, these distributions are impossible to obtain in analytical form. An alternative is to generate their approximations by Monte Carlo-based methods like Markov chain Monte Carlo (MCMC) sampling, adaptive importance sampling (AIS) or particle filtering (PF). While MCMC sampling and PF have received considerable attention in the literature and are reasonably well understood, the AIS methodology remains relatively unexplored. This article reviews the basics of AIS as well as provides a comprehensive survey of the state-of-the-art of the topic. Some of its most relevant implementations are revisited and compared through computer simulation examples.
Adaptive importance sampling, Population Monte Carlo, Markov chain Monte Carlo, Particle filtering
Adaptive importance sampling, Population Monte Carlo, Markov chain Monte Carlo, Particle filtering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 54 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
