Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Discrete Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Discrete Mathematics
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Discrete Mathematics
Article . 2012
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Discrete Mathematics
Article . 2012 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2012
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2011
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 7 versions
addClaim

Revolutionaries and Spies

Revolutionaries and spies
Authors: David M. Howard 0002; Clifford D. Smyth;

Revolutionaries and Spies

Abstract

Let $G = (V,E)$ be a graph and let $r,s,k$ be positive integers. "Revolutionaries and Spies", denoted $\cG(G,r,s,k)$, is the following two-player game. The sets of positions for player 1 and player 2 are $V^r$ and $V^s$ respectively. Each coordinate in $p \in V^r$ gives the location of a "revolutionary" in $G$. Similarly player 2 controls $s$ "spies". We say $u, u' \in V(G)^n$ are adjacent, $u \sim u'$, if for all $1 \leq i \leq n$, $u_i = u'_i$ or ${u_i,u'_i} \in E(G)$. In round 0 player 1 picks $p_0 \in V^r$ and then player 2 picks $q_0 \in V^s$. In each round $i \geq 1$ player 1 moves to $p_i \sim p_{i-1}$ and then player 2 moves to $q_i \sim q_{i-1}$. Player 1 wins the game if he can place $k$ revolutionaries on a vertex $v$ in such a way that player 1 cannot place a spy on $v$ in his following move. Player 2 wins the game if he can prevent this outcome. Let $s(G,r,k)$ be the minimum $s$ such that player 2 can win $\cG(G,r,s,k)$. We show that for $d \geq 2$, $s(\Z^d,r,2)\geq 6 \lfloor \frac{r}{8} \rfloor$. Here $a,b \in \Z^{d}$ with $a \neq b$ are connected by an edge if and only if $|a_i - b_i| \leq 1$ for all $i$ with $1 \leq i \leq d$.

This is the version accepted to appear in Discrete Mathematics

Related Organizations
Keywords

Graph games, Cops and robbers, Games on graphs (graph-theoretic aspects), cops and robbers, Theoretical Computer Science, 05C57, 91A43, 91A46, Revolutionaries and spies, FOS: Mathematics, Discrete Mathematics and Combinatorics, Mathematics - Combinatorics, graph games, revolutionaries and spies, Combinatorics (math.CO), Positional games (pursuit and evasion, etc.)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid