
AbstractThe Legendre–Stirling numbers are the coefficients in the integral Lagrangian symmetric powers of the classical Legendre second-order differential expression. In many ways, these numbers mimic the classical Stirling numbers of the second kind which play a similar role in the integral powers of the classical second-order Laguerre differential expression. In a recent paper, Andrews and Littlejohn gave a combinatorial interpretation of the Legendre–Stirling numbers. In this paper, we establish several properties of the Legendre–Stirling numbers; as with the Stirling numbers of the second kind, they have interesting generating functions and recurrence relations. Moreover, there are some surprising and intriguing results relating these numbers to some classical results in algebraic number theory.
Stirling numbers of the first kind, Combinatorics, Euler criterion, Discrete Mathematics and Combinatorics, Legendre–Stirling numbers, Left-definite theory, Stirling numbers of the second kind, Theoretical Computer Science
Stirling numbers of the first kind, Combinatorics, Euler criterion, Discrete Mathematics and Combinatorics, Legendre–Stirling numbers, Left-definite theory, Stirling numbers of the second kind, Theoretical Computer Science
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
