Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Discrete Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Discrete Mathematics
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Discrete Mathematics
Article . 2009
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Discrete Mathematics
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2009
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2006
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Sylvester–Gallai theorem, colourings and algebra

The Sylvester-Gallai theorem, colourings and algebra
Authors: Pretorius, Lou M.; Swanepoel, Konrad J.;

The Sylvester–Gallai theorem, colourings and algebra

Abstract

Our point of departure is the following simple common generalisation of the Sylvester-Gallai theorem and the Motzkin-Rabin theorem: Let S be a finite set of points in the plane, with each point coloured red or blue or with both colours. Suppose that for any two distinct points A,B in S sharing a colour there is a third point C in S, of the other colour, collinear with A and B. Then all the points in S are collinear. We define a chromatic geometry to be a simple matroid for which each point is coloured red or blue or with both colours, such that for any two distinct points A,B in S sharing a colour there is a third point C in S, of the other colour, collinear with A and B. This is a common generalisation of proper finite linear spaces and properly two-coloured finite linear spaces, with many known properties of both generalising as well. One such property is Kelly's complex Sylvester-Gallai theorem. We also consider embeddings of chromatic geometries in Desarguesian projective spaces. We prove a lower bound of 51 for the number of points in a 3-dimensional chromatic geometry in projective space over the quaternions. Finally, we suggest an elementary approach to the corollary of an inequality of Hirzebruch used by Kelly in his proof of the complex Sylvester-Gallai theorem.

23 pages, 3 figures

Related Organizations
Keywords

proper finite linear space, Motzkin–Rabin theorem, Combinatorial geometry, 51A45 (Primary); 05B25, 51E21 (Secondary), two-colouring of a finite linear space, Sylvester-Gallai theorem, Combinatorial aspects of matroids and geometric lattices, Desarguesian and Pappian geometries, Sylvester–Gallai theorem, 51A45 (Primary), Theoretical Computer Science, Two-colouring of a finite linear space, Motzkin-Rabin theorem, finite geometry, FOS: Mathematics, Discrete Mathematics and Combinatorics, Mathematics - Combinatorics, 05B25, 51E21 (Secondary), Combinatorics (math.CO), Finite geometry, combinatorial geometry, Proper finite linear space

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
hybrid