
handle: 2292/20878
AbstractIn this paper we define a combinatorial object called a pedigree, and study the corresponding polytope, called the pedigree polytope. Pedigrees are in one-to-one correspondence with the Hamiltonian cycles on Kn. Interestingly, the pedigree polytope seems to differ from the standard tour polytope, Qn with respect to the complexity of testing whether two given vertices of the polytope are nonadjacent. A polynomial time algorithm is given for nonadjacency testing in the pedigree polytope, whereas the corresponding problem is known to be NP-complete for Qn. We also discuss some properties of the pedigree polytope and illustrate with examples.
000, Flows in networks, Discrete Mathematics and Combinatorics, Multistage insertion formulation, Pedigree polytope, Symmetric Traveling Salesman Problem, Nonadjacency testing, Hamiltonian cycles, Theoretical Computer Science
000, Flows in networks, Discrete Mathematics and Combinatorics, Multistage insertion formulation, Pedigree polytope, Symmetric Traveling Salesman Problem, Nonadjacency testing, Hamiltonian cycles, Theoretical Computer Science
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
