Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmental & Comp...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental & Comparative Immunology
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2015
Data sources: HAL INRAE
versions View all 3 versions
addClaim

Ixodes ricinus defensins attack distantly-related pathogens

Authors: Tonk, Miray; Cabezas Cruz, Alejandro; Valdes, James J.; Rego, Ryan O.M.; Grubhoffer, Libor; Estrada-Peña, Agustin; Vilcinskas, Andreas; +2 Authors

Ixodes ricinus defensins attack distantly-related pathogens

Abstract

Antimicrobial peptides are ubiquitous components of eukaryotic innate immunity. Defensins are a well-known family of antimicrobial peptides, widely distributed in ticks, insects, plants and mammals, showing activity against bacteria, viruses, fungi, yeast and protozoan parasites. Ixodes ricinus is the most common tick species in Europe and is a vector of pathogens affecting human and animal health. Recently, six defensins (including two isoforms) were identified in I. ricinus. We investigated the evolution of the antimicrobial activity of I. ricinus defensins. Among the five unique defensins, only DefMT3, DefMT5 and DefMT6 showed in vitro antimicrobial activity. Each defensin was active against rather distantly-related bacteria (P < 0.05), significantly among Gram-negative species (P < 0.0001). These three defensins represent different clades within the family of tick defensins, suggesting that the last common ancestor of tick defensins may have had comparable antimicrobial activity. Differences in electrostatic potential, and amino acid substitutions in the β-hairpin and the loop bridging the α-helix and β-sheet may affect the antimicrobial activity in DefMT2 and DefMT7, which needs to be addressed. Additionally, the antimicrobial activity of the γ-core motif of selected defensins (DefMT3, DefMT6, and DefMT7) was also tested. Interestingly, compared to full length peptides, the γ-core motifs of these defensins were effective against less species of bacteria. However, the antifungal activity of the γ-core was higher than full peptides. Our results broaden the scope of research in the field of antimicrobial peptides highlighting the overlooked ability of arthropod defensins to act against distantly-related microorganisms.

Country
France
Keywords

Ixodes, [SDV]Life Sciences [q-bio], Ixodes ricinus, Amino Acid Motifs, 610, 500, Bacterial Infections, Listeria monocytogenes, Biological Evolution, Immunity, Innate, [SDV] Life Sciences [q-bio], Defensins, Mycoses, Species Specificity, Defensin, Host-Pathogen Interactions, Animals, Insect Proteins, Antimicrobial peptide, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!