<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Let $T$ be a random tree taken uniformly at random from the family of labelled trees on $n$ vertices. In this note, we provide bounds for $c(n)$, the number of sub-trees of $T$ that hold asymptotically almost surely. With computer support we show that $1.41805386^n \le c(n) \le 1.41959881^n$. Moreover, there is a strong indication that, in fact, $c(n) \le 1.41806183^n$.
FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |