Views provided by UsageCounts
handle: 2117/9211
Functional Data Analysis deals with samples where a whole function is observed for each individual. A relevant case of FDA is when the observed functions are density functions. Among the particular characteristics of density functions, the most of the fact that they are an example of infinite dimensional compositional data (parts of some whole which only carry relative information) is made. Several dimensionality reduction methods for this particular type of data are compared: functional principal components analysis with or without a previous data transformation, and multidimensional scaling for different interdensity distances, one of them taking into account the compositional nature of density functions. The emphasis is on the steps previous and posterior to the application of a particular dimensionality reduction method: care must be taken in choosing the right density function transformation and/or the appropriate distance between densities before performing dimensionality reduction; subsequently the graphical representation of dimensionality reduction results must take into account that the observed objects are density functions. The different methods are applied1 to artificial and real data (population pyramids for 223 countries in year 2000). As a global conclusion, the use of multidimensional scaling based on compositional distance is recommended.
multidimensional scaling, Estadística matemàtica, population pyramids, \(L_{p}\) distance, graphical output, Leibler divergence, :Matemàtiques i estadística::Anàlisi numèrica [Àrees temàtiques de la UPC], Compositional data Functional data analysis Graphical output Kullback-Leibler divergence Lp distance Multidimensional scaling Population pyramids Principal components analysis, Anàlisi global (Matemàtica), Àrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica, principal components analysis, :65 Numerical analysis [Classificació AMS], functional data analysis, Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica, Factor analysis and principal components; correspondence analysis, compositional data, Mathematical statistics, Multivariate analysis, Classificació AMS::65 Numerical analysis, :Matemàtiques i estadística::Estadística matemàtica [Àrees temàtiques de la UPC], Kullback, Numerical analysis
multidimensional scaling, Estadística matemàtica, population pyramids, \(L_{p}\) distance, graphical output, Leibler divergence, :Matemàtiques i estadística::Anàlisi numèrica [Àrees temàtiques de la UPC], Compositional data Functional data analysis Graphical output Kullback-Leibler divergence Lp distance Multidimensional scaling Population pyramids Principal components analysis, Anàlisi global (Matemàtica), Àrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica, principal components analysis, :65 Numerical analysis [Classificació AMS], functional data analysis, Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica, Factor analysis and principal components; correspondence analysis, compositional data, Mathematical statistics, Multivariate analysis, Classificació AMS::65 Numerical analysis, :Matemàtiques i estadística::Estadística matemàtica [Àrees temàtiques de la UPC], Kullback, Numerical analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 61 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 55 |

Views provided by UsageCounts