
In this short note, we announce a regularity theorem for the Kähler–Ricci flow on a compact Fano manifold (Kähler manifold with positive first Chern class) and its application to the limiting behavior of the Kähler–Ricci flow on Fano 3-manifolds. Moreover, we also present a partial C0 estimate of the Kähler–Ricci flow under the regularity assumption, which extends previous works on Kähler–Einstein metrics and shrinking Kähler–Ricci solitons. The detailed proof will appear elsewhere.
shrinking Kähler-Ricci solitons, Fano varieties, Fano manifold, Geometric evolution equations (mean curvature flow, Ricci flow, etc.), positive first Chern class
shrinking Kähler-Ricci solitons, Fano varieties, Fano manifold, Geometric evolution equations (mean curvature flow, Ricci flow, etc.), positive first Chern class
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
