Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Università degli Stu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Research in Biotechnology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Research in Biotechnology
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FEEDS, the Food wastE biopEptiDe claSsifier: From microbial genomes and substrates to biopeptides function

Authors: Victor Borin Centurion; Edoardo Bizzotto; Stefano Tonini; Pasquale Filannino; Raffaella Di Cagno; Guido Zampieri; Stefano Campanaro;

FEEDS, the Food wastE biopEptiDe claSsifier: From microbial genomes and substrates to biopeptides function

Abstract

The production of biopeptides from food waste through microbial fermentation faces challenges arising from the diverse proteolytic abilities of microorganisms and substrate variability, impacting both the quality and yield of generated biopeptides. To address these challenges, preliminary in-silico bioinformatics analyses play a crucial role in evaluating suitable substrates and proteases for the fermentation process. However, existing tools lack comprehensive predictive capabilities for relevant proteases, substrate performance assessment, and final biopeptide family characterization. To overcome these limitations, we developed FEEDS (Food wastE biopEptiDe claSsifier), a novel biopeptide prediction and classification tool. FEEDS predicts biopeptide families based on microbial genome protease profiles and substrate composition during proteolysis. The tool also employs a machine learning approach for functional biopeptide classification. Results from testing on 1000 microbial genomes demonstrate the effectiveness of biopeptide classification, particularly in categorizing peptides derived from substrates like Hordeum vulgare and Vitis vinifera seed storage proteins. In addition to biopeptide classification, our study delves into the distinctive protease profiles of bacteria and yeast genomes. Bacterial genomes exhibited 60 to 100 proteases across 40–55 families. Contrastingly, yeast genomes displayed a more evenly distributed pattern with 150 to 160 protease-encoding genes across 60 to 67 families, surpassing bacterial counts. Remarkably, a substantial portion of yeast proteases (∼66 %) was secreted. Moreover, our integration of a machine learning methodology within the FEEDS pipeline proved highly effective, achieving over 80 % accuracy in predicting the function of peptides derived from seed storage proteins. Notably, longer peptide sequences exceeding 20 amino acids consistently displayed a higher probability of correct assignment compared to shorter counterparts.

Keywords

570, Bacteria, Food waste, Proteases, Yeasts, Digestion, Bioactive peptides, TP248.13-248.65, Biotechnology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
gold