Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computer Physics Com...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2019
Data sources: Lirias
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computer Physics Communications
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2019
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Slurm: Fluid particle-in-cell code for plasma modeling

Slurm: fluid particle-in-cell code for plasma modeling
Authors: Olshevsky, Vyacheslav; Bacchini, Fabio; Poedts, Stefaan; Lapenta, Giovanni;

Slurm: Fluid particle-in-cell code for plasma modeling

Abstract

With the approach of exascale computing era, particle-based models are becoming the focus of research due to their excellent scalability. We present a new code, Slurm, which implements the classic particle-in-cell algorithm for modeling magnetized fluids and plasmas. It features particle volume evolution which damps the numerical finite grid instability, and allows modeling of key physical instabilities such as Kelvin-Helmholtz and Rayleigh-Taylor. The magnetic field in Slurm is handled via the electromagnetic vector potential carried by particles. Numerical diffusion of the magnetic flux is extremely low, and the solenoidality of the magnetic field is preserved to machine precision. A double-linked list is used to carry particles, thus implementation of open boundary conditions is simple and efficient. The code is written in C++ with OpenMP multi-threading, and has no external dependencies except for Boost. It is easy to install and use on multi-core desktop computers as well as on large shared-memory machines. Slurm is an ideal tool for its primary goal, modeling of space weather events in the heliosphere. This article walks the reader through the physical model, the algorithm, and all important details of implementation. Ideally, after finishing this paper, the reader should be able to either use Slurm for solving the desired problem, or create a new fluid PIC code.

Accepted to the special issue "Advances in the Numerical Simulation of Plasmas" of the Computer Physics Communications

Country
Belgium
Keywords

Technology, FLIP, CODE, FOS: Physical sciences, computational fluid dynamics, Computational fluid dynamics, 46 Information and computing sciences, plasma simulations, Magnetohydrodynamics, Fluid mechanics, particle-in-cell, 01 Mathematical Sciences, Science & Technology, 02 Physical Sciences, Physics, SCHEME, Plasma simulations, Computational Physics (physics.comp-ph), Nuclear & Particles Physics, SIMULATIONS, Physics, Mathematical, Geophysics, Physical Sciences, Computer Science, Particle-in-cell, Computer Science, Interdisciplinary Applications, 08 Information and Computing Sciences, 51 Physical sciences, magnetohydrodynamics, 49 Mathematical sciences, Physics - Computational Physics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
Green
bronze