<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 33450534
Neurons rely on a unique organization of their cytoskeleton to build, maintain and transform their extraordinarily intricate shapes. After decades of research on the neuronal cytoskeleton, it is exciting that novel assemblies are still discovered thanks to progress in cellular imaging methods. Indeed, super-resolution microscopy has revealed that axons are lined with a periodic scaffold of actin rings, spaced every 190nm by spectrins. Determining the architecture, composition, dynamics, and functions of this membrane-associated periodic scaffold is a current conceptual and technical challenge, as well as a very active area of research. This short review aims at summarizing the latest research on the axonal periodic scaffold, highlighting recent progress and open questions.
Neurons, [SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology, Spectrin, Actins, Axons, Cytoskeleton
Neurons, [SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology, Spectrin, Actins, Axons, Cytoskeleton
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |