Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Composite Structuresarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Composite Structures
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Improvements in the thermal behaviour of date palm/bamboo fibres reinforced epoxy hybrid composites

Authors: M. Jawaid; Sameer Awad; H. Fouad; M. Asim; N. Saba; Hom N. Dhakal;

Improvements in the thermal behaviour of date palm/bamboo fibres reinforced epoxy hybrid composites

Abstract

Abstract Natural fibre–reinforced epoxy composites have been increasingly utilised in construction and building applications. These materials introduce cost-effective alternatives to conventional materials and their utilisation often has related to financial advantages that are immediate and can be expected over the structure service life. In this work, the results of thermal, dynamic-mechanical, and thermal-mechanical properties of date palm fibre (DPF)/bamboo fibre (BF) hybrid composite were compared to bamboo fibre-reinforced epoxy to demonstrate the importance of hybridization. The thermal stability was improved when DPF/BF fillers were added in epoxy resin comparatively to BF reinforced epoxy. The glass transition temperature (Tg ) was increased by incorporating the date palm fibre/bamboo hybrid composite in epoxy compared to the BF reinforced epoxy. The thermal expansion was enhanced by modifying the hybrid composites in epoxy in contrast to the single fibre composites, without hybridisation. Hence, the hybridisation technique of date palm fibre with bamboo has improved the thermal and thermal-mechanical properties suitable for several applications including non-structural applications.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!