Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Composite Structuresarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Composite Structures
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

A comparison of fast Fourier transform-based homogenization method to asymptotic homogenization method

Authors: Zeyao Chen; Yi Min Xie; Zhe Wang; Qing Li; Xian Wu; Shiwei Zhou;

A comparison of fast Fourier transform-based homogenization method to asymptotic homogenization method

Abstract

Abstract This paper provides a comparison study on the homogenization methods based on asymptotic approach and fast Fourier transform (FFT), respectively. Their essential ideas, numerical implementation, efficiency, applicability as well as the deformation modes of unit cell are reviewed and compared. Numerical examples show that the effective mechanical properties obtained by FFT-based homogenization are smaller than those of asymptotic homogenization with the same mesh but within an acceptable error margin with a finer mesh. Because a conjugate gradient algorithm is used, the FFT-based homogenization method can obtain the results much faster than asymptotic homogenization which is based on finite element analysis. We find FFT-based can be used for porous structures with infinite contrast in Young’s modulus of solid material and void material. We propose an algorithm to calculate the node displacement of unit cell for FFT-based homogenization and note it can generate deformation patterns which came more reasonably reflect periodic boundary conditions than asymptotic homogenization.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!