<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Porous cellular foams, combining lightweight, high strength, and compressibility, hold great promise in a wide range of advanced applications. Here, the native structure of pine wood was modified by in-situ lignin sulfonation and unidirectional freezing, resulting in an alveolate structure inside the wood cell wall with arrays of sub-100 nm channels. The obtained wood foam exhibited highly enhanced permeability while retaining the native cellular arrangement and high lignin and hemicellulose content. Such engineered cellular foam contributed to superior mechanical performance with compressive strength of 9 MPa and Young's modulus of 344 MPa in the longitudinal direction. The high porosity allowed homogeneous infiltration of conductive polymer PEDOT:PSS inside the wood cell wall. The resulting composite exhibited high conductivity, sponge-like compressibility and the ability to modulate electrical resistance in a reversible manner in the radial direction. This rationally designed conductive wood demonstrated potential in durable and ultrasensitive pressure-responsive devices and strain sensors.
Composites Part A: Applied Science and Manufacturing, 178
ISSN:1359-835X
ISSN:1878-5840
B Electrical properties, A Foams, Trävetenskap, A Multifunctional composites, Wood Science, A Foams; A Multifunctional composites; B Electrical properties; B Mechanical properties, B Mechanical properties
B Electrical properties, A Foams, Trävetenskap, A Multifunctional composites, Wood Science, A Foams; A Multifunctional composites; B Electrical properties; B Mechanical properties, B Mechanical properties
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |