
System identification is a common tool for estimating (linear) plant models as a basis for model-based predictive control and optimization. The current challenges in process industry, however, ask for data-driven modelling techniques that go beyond the single unit/plant models. While optimization and control problems become more and more structured in the form of decentralized and/or distributed solutions, the related modelling problems will need to address structured and interconnected systems. An introduction will be given to the current state of the art and related developments in the identification of linear dynamic networks. Starting from classical prediction error methods for open-loop and closed-loop systems, several consequences for the handling of network situations will be presented and new research questions will be highlighted.
Distributed control, Closed-loop identification, Dynamic networks, FOS: Electrical engineering, electronic engineering, information engineering, Model-based control, Identifiability, Systems and Control (eess.SY), System identification, Electrical Engineering and Systems Science - Systems and Control, Experiment design
Distributed control, Closed-loop identification, Dynamic networks, FOS: Electrical engineering, electronic engineering, information engineering, Model-based control, Identifiability, Systems and Control (eess.SY), System identification, Electrical Engineering and Systems Science - Systems and Control, Experiment design
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
