Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computer Methods in ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computer Methods in Applied Mechanics and Engineering
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computer Methods in Applied Mechanics and Engineering
Article . 2015
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computer Methods in Applied Mechanics and Engineering
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2014
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Validating predictions of unobserved quantities

Authors: Oliver, Todd A.; Terejanu, Gabriel; Simmons, Christopher S.; Moser, Robert D.;

Validating predictions of unobserved quantities

Abstract

The ultimate purpose of most computational models is to make predictions, commonly in support of some decision-making process (e.g., for design or operation of some system). The quantities that need to be predicted (the quantities of interest or QoIs) are generally not experimentally observable before the prediction, since otherwise no prediction would be needed. Assessing the validity of such extrapolative predictions, which is critical to informed decision-making, is challenging. In classical approaches to validation, model outputs for observed quantities are compared to observations to determine if they are consistent. By itself, this consistency only ensures that the model can predict the observed quantities under the conditions of the observations. This limitation dramatically reduces the utility of the validation effort for decision making because it implies nothing about predictions of unobserved QoIs or for scenarios outside of the range of observations. However, there is no agreement in the scientific community today regarding best practices for validation of extrapolative predictions made using computational models. The purpose of this paper is to propose and explore a validation and predictive assessment process that supports extrapolative predictions for models with known sources of error. The process includes stochastic modeling, calibration, validation, and predictive assessment phases where representations of known sources of uncertainty and error are built, informed, and tested. The proposed methodology is applied to an illustrative extrapolation problem involving a misspecified nonlinear oscillator.

Keywords

FOS: Computer and information sciences, Mechanical Engineering, Computational Mechanics, FOS: Physical sciences, Physics and Astronomy(all), Computer Science Applications, Methodology (stat.ME), Mechanics of Materials, Physics - Data Analysis, Statistics and Probability, Statistics - Methodology, Data Analysis, Statistics and Probability (physics.data-an)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 10%
Top 10%
Top 10%
Green
hybrid
Related to Research communities