Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Clinical Nutrition
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

Segmental body composition estimated by specific BIVA and dual-energy X-ray absorptiometry

Authors: Stagi S.; Irurtia A.; Rosales Rafel J.; Cabras S.; Buffa R.; Carrasco-Marginet M.; Castizo-Olier J.; +1 Authors

Segmental body composition estimated by specific BIVA and dual-energy X-ray absorptiometry

Abstract

The aim of this study was to analyse the association between specific bioelectric impedance vector analysis (BIVA) and dual-energy X-ray absorptiometry (DXA) to assess segmental body composition using DXA as the reference technique.The sample comprised 50 young active students who practised or played different sports (25 men, age: 24.37 ± 4.79 y; 25 women, age: 24.32 ± 4.43 y) from the National Institute of Physical Education of Catalonia (INEFC). Anthropometric data (height, weight, arm, waist, and calf circumferences) and bioelectrical measurements (R, ohm; Xc, ohm) were recorded. Body composition was analysed with specific BIVA. DXA was used as the reference method to assess body composition of the whole-body, the trunk, and the limbs. The percentage of fat mass (%FMDXA) and fat-free mass index (FFMIDXA = FFM/length2) were calculated. The agreement between specific BIVA and DXA was evaluated by a depth-depth analysis, two-way ANOVA, and Pearson's correlations.The depth-depth analysis showed a good agreement between DXA and BIVA (F = 14.89, p < 0.001) in both sexes and all body segments. Specific vector length (Zsp; i.e. indicative of %FM) was correlated with %FMDXA in the whole body and all body segments, and the phase angle was correlated with FFMIDXA, with he trunk in women as the only exception. Specific BIVA demonstrated to balance the effect of body size on bioelectrical measurements in both whole and segmental approaches.Segmental specific BIVA and DXA provided a consistent evaluation of body composition in both sexes, of the whole body and each body segment. The indices %FM and FFMI obtained with DXA were correlated to vector length and phase angle in each segment, respectively. Specific BIVA represents a promising technique for monitoring segmental body composition changes in sport science and clinical applications.

Country
Italy
Keywords

DXA, Adult, Male, BIVA, Estadística, Phase angle, Young Adult, Absorptiometry, Photon, Bioelectrical impedance vector analysis, Body Composition, Electric Impedance, Humans, Female, Segmental body composition, Biología y Biomedicina, bioelectrical impedance vector analysis; BIVA; DXA; phase angle; segmental body composition

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 13
    download downloads 58
  • 13
    views
    58
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
19
Top 10%
Average
Top 10%
13
58
Green