Downloads provided by UsageCounts
handle: 10251/64899
[EN] With the aim of understanding the flux distributions across a metabolic network, i.e. within living cells, Principal Component Analysis (PCA) has been proposed to obtain a set of orthogonal components (pathways) capturing most of the variance in the flux data. The problems with this method are (i) that no additional information can be included in the model, and (ii) that orthogonality imposes a hard constraint, not always reasonably. To overcome these drawbacks, here we propose to use a more flexible approach such as Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) to obtain this set of biological pathways through the network. By using this method, different constraints can be included in the model, and the same source of variability can be present in different pathways, which is reasonable from a biological standpoint. This work follows a methodology developed for Pichia pastoris cultures grown on different carbon sources, lately presented in González-Martínez et al. (2014). In this paper a different grey modelling approach, which aims to incorporate a priori knowledge through constraints on the modelling algorithms, is applied to the same case of study. The results of both models are compared to show their strengths and weaknesses.
Research in this study was partially supported by the Spanish Ministry of Science and Innovation and FEDER funds from the European Union through grants DPI2011-28112-C04-01 and DPI2011-28112-C04-02. The authors are also grateful to Biopolis SL for supporting this research.
Pichia pastoris, ESTADISTICA E INVESTIGACION OPERATIVA, Metabolic network, Multivariate Curve Resolution-Alternating, Least Squares, Grey modelling, INGENIERIA DE SISTEMAS Y AUTOMATICA
Pichia pastoris, ESTADISTICA E INVESTIGACION OPERATIVA, Metabolic network, Multivariate Curve Resolution-Alternating, Least Squares, Grey modelling, INGENIERIA DE SISTEMAS Y AUTOMATICA
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 37 | |
| downloads | 169 |

Views provided by UsageCounts
Downloads provided by UsageCounts