
pmid: 17046223
The correlation between cell shape elongation and the orientation of the division axis described by early cell biologists is still used as a paradigm in developmental studies. However, analysis of early embryo development and tissue morphogenesis has highlighted the role of the spatial distribution of cortical cues able to guide spindle orientation. In vitro studies of cell division have revealed similar mechanisms. Recent data support the possibility that the orientation of cell division in mammalian cells is dominated by cell adhesion and the associated traction forces developed in interphase. Cell shape is a manifestation of these adhesive and tensional patterns. These patterns control the spatial distribution of cortical signals and thereby guide spindle orientation and daughter cell positioning. From these data, cell division appears to be a continuous transformation ensuring the maintenance of tissue mechanical integrity.
Microfilament Proteins, Cell Polarity, Spindle Apparatus, Tensile Strength, Cell Adhesion, Animals, Humans, Cell Shape, Interphase, Cell Division, Cytokinesis
Microfilament Proteins, Cell Polarity, Spindle Apparatus, Tensile Strength, Cell Adhesion, Animals, Humans, Cell Shape, Interphase, Cell Division, Cytokinesis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 281 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
