Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Comparative Biochemi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Effects of aluminum on the energetic substrates in neotropical freshwater Astyanax bimaculatus (Teleostei: Characidae) females

Authors: Vanessa A R O, Vieira; Tiago G, Correia; Renata G, Moreira;

Effects of aluminum on the energetic substrates in neotropical freshwater Astyanax bimaculatus (Teleostei: Characidae) females

Abstract

We investigated the effects of acidic pH and acute aluminum (Al) exposure on the metabolic substrates of Astyanax bimaculatus, and on the ability of these animals to recover in clean water. After an acclimation period, sexually mature A. bimaculatus females were sorted into six glass aquaria with three experimental groups: control in neutral pH (7.0), acidic pH (5.5), and Al (0.5 mg·L(-1)) in acidic pH (5.5). After a 96 h treatment, 10 animals from each experimental group were sampled and the rest were returned to clean water in neutral pH without Al for a recovery period of 96 h. The acidic pH, either alone or combined with Al, decreased T4 levels, whereas Al exposure increased T3 levels. Recovery of T3 levels occurred after 96 h. Al exposure decreased ovary and plasma proteins, muscle glycogen contents, and hepatic lipids due to lipoperoxidation. In the recovery phase, lipids decreased in most tissues, probably to re-establish ovary protein and hepatic glycogen. A. bimaculatus prioritized the use of energetic resources during acclimatization to Al instead of prioritizing reproduction, thereby avoiding the ovulation of impaired eggs.

Keywords

Fish Proteins, Time Factors, Fresh Water, Toxicity Tests, Acute, Animals, Muscles, Ovary, Blood Proteins, Hydrogen-Ion Concentration, Lipid Metabolism, Adaptation, Physiological, Thyroxine, Liver, Triiodothyronine, Female, Characiformes, Energy Metabolism, Acids, Glycogen, Aluminum

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!