Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Building and Environ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Building and Environment
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Top-down or bottom-up? – How environmental benchmarks can support the design process

Authors: Alexander Hollberg; Thomas Lützkendorf; Guillaume Habert;

Top-down or bottom-up? – How environmental benchmarks can support the design process

Abstract

Abstract Buildings are responsible for a large share of greenhouse gas (GHG) emissions. The use of Life Cycle Assessment (LCA) during the design phase can help to improve the environmental performance of buildings. However, designers and clients find it difficult to set environmental performance targets and interpret the results obtained through LCA in order to improve the building design. Therefore, reference values or benchmarks are needed. Current available LCA-based benchmarks have mostly been developed for certification systems on whole building level and do not provide design guidance on material or element level. To close this gap, this paper introduces an alternative approach that supports the design process by providing guidance and encouraging to improve the environmental performance. The aim of this approach is to support exploiting the optimization potential particularly regarding the embodied GHG emissions related to the manufacturing of construction products and to the construction, maintenance and demolition of the building. The concept consists in combining top-down benchmarks per capita derived from the capacity of the global eco system with bottom-up reference values for building components that are defined based on a statistical best-in-class approach (top 5%) using the market share of different construction products. Benchmarks for GHG emissions for new residential buildings in Switzerland are discussed. The results of applying the dual benchmark approach to a case study show that it can facilitate the use of LCA-based tools for design support and promote the optimization of the building-related environmental performance.

Keywords

info:eu-repo/classification/ddc/330, 330, ddc:330, Economics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!