Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dopamine D2 receptor signaling dynamics of dopamine D2-neurotensin 1 receptor heteromers

Authors: Ismel Brito; Ismel Brito; Alexander O. Tarakanov; Fidel Corrales; Luigi F. Agnati; Kjell Fuxe; Wilber Romero-Fernandez; +5 Authors

Dopamine D2 receptor signaling dynamics of dopamine D2-neurotensin 1 receptor heteromers

Abstract

Biochemical, histochemical and coimmunoprecipitation experiments have indicated the existence of antagonistic dopamine D2 (D2R) and neurotensin 1 (NTS1R) receptor-receptor interactions in the dorsal and ventral striatum indicating a potential role of these receptor-receptor interactions in Parkinson's disease and schizophrenia. By means of Bioluminiscence Resonance energy transfer (BRET(2)) evidence has for the first time been obtained in the current study for the existence of both D2LR/NTS1R and D2SR/NTS1R heteromers in living HEK293T cells. Through confocal laser microscopy the NTS1R(GFP2) and D2R(YFP) were also shown to be colocated in the plasma membrane of these cells. A bioinformatic analysis suggests the existence of a basic set of three homology protriplets (TVM, DLL and/or LRA) in the two participating receptors which may contribute to the formation of the D2R/NTS1R heteromers by participating in guide-clasp interactions in the receptor interface. The CREB reporter gene assay indicated that the neurotensin receptor agonist JMV 449 markedly reduced the potency of the D2R like agonist quinpirole to inhibit the forskolin induced increase of the CREB signal. In contrast, the neurotensin agonist was found to markedly increase the quinpirole potency to activate the MAPK pathway as also studied with luciferase reporter gene assay measuring the degree of SRE activity as well as with ERK1/2 phosphorylation assays. These dynamic changes in D2R signaling produced by the neurotensin receptor agonist may involve antagonistic allosteric receptor-receptor interactions in the D2LR-NTS1R heteromers at the plasma membrane level (CREB pathway) and synergistic interactions in PKC activation at the cytoplasmatic level (MAPK pathway).

Keywords

Bioluminescence Resonance Energy Transfer Techniques, Mitogen-Activated Protein Kinase 1, Models, Molecular, Microscopy, Confocal, Mitogen-Activated Protein Kinase 3, Dose-Response Relationship, Drug, Cell Membrane, Dopamine D2R receptor; Neurotensin 1 receptor; Heteromerization; G protein-coupled receptors; Allosteric modulation; Protein–protein interactions, Protein Structure, Tertiary, Kinetics, Luminescent Proteins, HEK293 Cells, Dopamine Agonists, Quinolines, Dopamine Antagonists, Humans, Pyrazoles, Phosphorylation, Protein Multimerization, Oligopeptides, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!