Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Oxidative modification of quercetin by hemeproteins

Authors: Andrey Gilep; Alexander V. Baranovsky; Egor M. Cherviakovsky; Vladimir P. Kurchenko; Tamara M. Vlasova; Dmitry A. Bolibrukh; Sergey A. Usanov;

Oxidative modification of quercetin by hemeproteins

Abstract

The ability of a number of hemeproteins to oxidize the flavonoid quercetin has been shown. It was found that quercetin undergoes chemical modification in the presence of cytochrome c, myoglobin, and hemoglobin but not cytochrome b(5). In the range of investigated proteins the most effective oxidant appears to be cytochrome c. Chromatographic analysis of the reaction mixture revealed a number of quercetin oxidation products. The main oxidation product was purified and characterized by means of LC-MS and NMR analyses. It has a dimeric structure similar to the product of quercetin oxidation by horseradish peroxidase and is formed during radical-driven reactions. Our results indicate that a number of hemeproteins can react and modify biologically active flavonoids. However, these reactions might also lead to the generation of active species with deleterious consequences for the cellular macromolecules.

Keywords

Flavonoids, Hemeproteins, Magnetic Resonance Spectroscopy, Cytochromes c, Oxidants, Mass Spectrometry, Kinetics, Animals, Quercetin, Spectrophotometry, Ultraviolet, Horses, Oxidation-Reduction, Chromatography, Liquid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?