
pmid: 15238265
Allophycocyanin is a biliprotein located in the core of the phycobilisome. The biliprotein is isolated and purified as a trimer (alpha3beta3), where a monomer is an alphabeta structure. Each alpha and beta subunit has a single noncyclic tetrapyrrole chromophore, called phycocyanobilin. The trimer of allophycocyanin has an unusual absorption maximum at 650 nm with a shoulder at 620 nm, while the monomer has an absorption maximum at 615 nm. Two explanations have been proposed for the 650-nm maximum. In one, this maximum is produced by the interaction of a particular local protein environment for three of the chromophores, causing them to red shift, while the other three chromophores are at a higher energy. Energy is transferred from the high- to the low-energy chromophores by Förster resonance energy transfer, the donor-acceptor model. In the second proposal, there is strong exciton coupling between two chromophores of the trimer that closely approach across the monomer-monomer interface. The strong interaction causes exciton splitting and a red shift in the absorption. There are three of these strongly coupled chromophore pairs, and energy is transferred between the two-exciton states of a pair by internal conversion. A variety of biophysical methods have been used to examine this question. Although evidence supporting both models has been produced, sophisticated ultra fast fluorescence results from a plethora of approaches now firmly point to the latter strong coupling hypothesis as being more likely. Between the different strongly coupled pairs, Förster resonance energy transfer should occur. For monomers of allophycocyanin, Förster resonance energy transfer occurs between the two chromophores.
Biophysics, Phycocyanin, Cell Biology, Biliprotein, Phycobilisome, Biochemistry, Allophycocyanin, Femtosecond fluorescence spectroscopy, Internal conversion, Biopolymers, Energy Transfer, Förster resonance energy transfer, Spectrophotometry, Exciton coupling, Photosynthesis
Biophysics, Phycocyanin, Cell Biology, Biliprotein, Phycobilisome, Biochemistry, Allophycocyanin, Femtosecond fluorescence spectroscopy, Internal conversion, Biopolymers, Energy Transfer, Förster resonance energy transfer, Spectrophotometry, Exciton coupling, Photosynthesis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 141 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
