Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Automation in Constr...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Automation in Construction
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computational generation of free-form shells in architectural design and civil engineering

Authors: Isaias Vizotto;

Computational generation of free-form shells in architectural design and civil engineering

Abstract

Abstract This study develops a computational model of free-form shell generation in the design of roof structures that rely on the optimized behavior of the membrane theory of thin shells. For architects and engineers, the model offers a low cost, fast, and relatively easy design solution. A computational model for structural free-form shell generation is presented to simulate physical models of shell optimization. This method of designing optimized structures is based on mathematical programming combined with the finite element technique, and is inspired by the laws of nature and, in particular, by the Heinz Isler methods of designing shells using physical models. A flexible membrane is simulated automatically, initially in the horizontal plane surface, with any shape and boundary conditions, and able to carry several specified loads. The membrane under the action of these loads is deformed until reaching one of its equilibrium configurations, which defines the middle surface of the shell to be built. By the principle of minimum total potential energy, the positions of steady equilibrium of the membrane correspond to the local minimum points of the total potential energy function. When the total potential energy function does not exist, it is advisable to use an incremental Newton–Raphson-type method to find the solutions for the nonlinear system of equations given by the equilibrium equations of the membrane in the space. Structural analysis of thin concrete shells with the final shapes of the optimized membranes demonstrates which displacements and principal stresses are optimal. The computational method presented in this paper could be integrated, for example, with Contour Crafting (CC), a layered fabrication technology that offers the potential to construct full-scale buildings directly from three-dimensional computer-aided design models (3D CAD). Structural behavior is in accordance with the membrane theory of thin shells and aesthetic appeal is a natural consequence of the forms generated for applications in architectural design and civil engineering.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?