Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hong Kong Polytechni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advances in Space Research
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Deformation monitoring using GNSS-R technology

Authors: Yang, Y; Zheng, Y; Yu, W; Chen, W; Weng, D;

Deformation monitoring using GNSS-R technology

Abstract

Abstract GNSS reflectometry (GNSS-R) has been widely studied in recent years for various applications, such as soil moisture monitoring, biomass analysis, and sea state monitoring. This paper presents the concept of a novel application of using GNSS-R technology for deformation monitoring. Instead of installing GNSS on the deformation body to sense the movement, GNSS-R deformation monitoring system estimates the deformation from receiving GNSS signal reflected by the deformation body remotely. A prototype of GNSS-R deformation monitoring system has been developed based on GNSS software receiver technology. A 3D geometrical model of GNSS signal reflection has been used to reveal the relationship between the change of carrier phase difference and deformation. After compensating the propagation path delay changes caused by satellite movement, the changes in the remaining carrier phase difference are linked to the deformation. Field tests have been carried using the GNSS-R system developed and the results show sub-centimeter level deformation can be observed with the new technology. Unlike other GNSS deformation monitoring methods, GNSS-R receivers are not installed on the slope which makes this new technology more attractive.

Countries
China (People's Republic of), Hong Kong
Keywords

Deformation monitoring, GNSS-R, 004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
Green