Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Advances in Space Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advances in Space Research
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Trajectory classification in circular restricted three-body problem using support vector machine

Authors: Weipeng Li; Fujun Peng; Hai Huang;

Trajectory classification in circular restricted three-body problem using support vector machine

Abstract

Abstract In the circular restricted three-body problem (CR3BP), transit orbit is a class of orbit which can pass through the bottleneck region of the zero velocity curve and escapes from the vicinity of the primary or the secondary. This kind of orbit plays a very important role in the design of space exploration missions. A kind of low-energy interplanetary transfer, which is called Interplanetary Superhighway (IPS), can be realized by utilizing transit orbits. To use the transit orbit in actual mission design, a key issue is to find an algorithm which can separate the states corresponding to transit orbits from the states corresponding to other types of orbits rapidly. In fact, the distribution of transit orbit in the phase space has been investigated by numerical method, and a Fourier series approximation method has been introduced to describe the boundary of transit orbits. However, the Fourier series approximation method needs several hundred sets of Fourier series. The coefficients of these Fourier series are neither easy to be computed nor convenient to be stored, which makes the method can hardly be used in actual mission design. In this paper, the support vector machine (SVM) is used to classify the trajectories in the CR3BP. Using the Gaussian kernel, the 6-dimensional states in the CR3BP are mapped into an infinite-dimensional space, and the bound of the transit orbits is described by a hyperplane. A training data generation method is introduced, which reduces the size of training data by generating the states near the hyperplane. The numerical results show that the proposed algorithm gives the good correct rate of classification, and its computing speed is much faster than that of the Fourier series approximation method.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!