
Abstract Three dimensional nanocomposites made up of TiO2 nanotubes (TNTs) and conducting reduced graphene oxide nanosheets (RGO) were fabricated successfully via hydrothermal method. These graphene/TNTs nanocomposites (GTNCs) with unique nanostructure not only provided sufficient active sites but supplied electron-transport path, Which gave big rise to their photocatalytic activity. In addition, the graphene amount and calcination temperature were intensively optimized. A series of products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV–vis absorption spectroscopy. The photocatalytic activity of as-prepared GTNCs was investigated through the degradation of methyl orange (MO) under UV-light irradiation. The results show that these GTNCs are well-structured with outstanding photocatalytic activity which is much better than that of traditional TiO2 nanotubes.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 59 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
