Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Thermal Engineering
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimization of a dual free piston Stirling engine

Authors: Boucher, Julien; Lanzetta, François; Nika, Philippe;

Optimization of a dual free piston Stirling engine

Abstract

This work relates the theoretical study of the dynamic behavior of a dual free-piston Stirling engine (DFPSE) coupled with an asynchronous linear alternator. This machine integrates one piston and two displacers placed in a symmetrical way compared to the piston to improve the stability of the machine. The paper presents an analytical study of the dynamic balance equations of a DFPSE. This model takes into account the non-linear dissipative effects of the fluid and the electromagnetic forces. The dynamic balance equations of the machine are solved by means of linearized pressure in the time domain especially. The objective is to evaluate the thermo-mechanical conditions for stable operation of the engine. The developed model may be used to simulate the dynamic behaviour of a built engine. The DFPSE produces a mechanical power of 1 kW and it has a design operating point of 1.4 MPa corresponding to the frequency about 22 Hz. Helium is the working fluid. This machine is designed to be used as a micro combined heat and power (μCHP) system for combined generation of electricity and heat.

Country
France
Keywords

free piston, [SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph], [PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph], 621, Stirling engine, micro-cogeneration, 620

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!