<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10852/77797
We study the logical and computational properties of basic theorems of uncountable mathematics, in particular Pincherle's theorem, published in 1882. This theorem states that a locally bounded function is bounded on certain domains, i.e. one of the first 'local-to-global' principles. It is well-known that such principles in analysis are intimately connected to (open-cover) compactness, but we nonetheless exhibit fundamental differences between compactness and Pincherle's theorem. For instance, the main question of Reverse Mathematics, namely which set existence axioms are necessary to prove Pincherle's theorem, does not have an unique or unambiguous answer, in contrast to compactness. We establish similar differences for the computational properties of compactness and Pincherle's theorem. We establish the same differences for other local-to-global principles, even going back to Weierstrass. We also greatly sharpen the known computational power of compactness, for the most shared with Pincherle's theorem however. Finally, countable choice plays an important role in the previous, we therefore study this axiom together with the intimately related Lindel��f lemma.
43 pages, one appendix, to appear in Annals of Pure and Applied Logic
03B30, 03D65, 03F35, FOS: Mathematics, Mathematics - Logic, Logic (math.LO), 004, 510
03B30, 03D65, 03F35, FOS: Mathematics, Mathematics - Logic, Logic (math.LO), 004, 510
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |