Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Acousticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Acoustics
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Wall suction & slip effect of spherical-grooved bionic metasurface for controlling the aerodynamic noise

Authors: Min Li; Jiu Hui Wu; Xiao Yang Yuan;

Wall suction & slip effect of spherical-grooved bionic metasurface for controlling the aerodynamic noise

Abstract

Abstract The wall suction & slip effect of the bionic metasurface with periodic spherical grooves on the vehicle body surface is proposed for aerodynamic noise control, and physical mechanism is investigated by theoretical analysis and simulation. When fluid flows through the grooved vehicle body surface, wall suction effect occurs due to clockwise pressure difference around the interior groove. The trailing vortex region of the vehicle body is reduced, the fluctuating pressure on the wall surface decreases, and the adverse pressure in the boundary layer is relieved. On the other hand, a slip velocity consistent with flow direction is generated at the interface corresponding to grooves, which results in reduced velocity gradient in the boundary layer and decreased thickness of the boundary layer. Ideally, the boundary layer could disappear when the velocity of slippage is increased to that of the flow by adjusting the grooves parameters, such as, the groove depth, pitch, and radius. Overall, the wall suction & slip effect fundamentally prevents generation of the boundary layer and delays its separation. Finally, effective control of aerodynamic noise within 450–1000 Hz on the vehicle body surface is realized by an average drop of 11.97 dB and up to 100% at 500 Hz. This study opens up a possibility for full control of boundary layer and could have effective applications in controlling aerodynamic noise.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!