<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10773/4154
AbstractIn this paper we investigate optimality conditions for fractional variational problems, with a Lagrangian depending on the Riesz–Caputo derivative. First we prove a generalized Euler–Lagrange equation for the case when the interval of integration of the functional is different from the interval of the fractional derivative. Next we consider integral dynamic constraints on the problem, for several different cases. Finally, we determine optimality conditions for functionals depending not only on the admissible functions, but on time also, and we present a necessary condition for a pair function-time to be an optimal solution to the problem.
Isoperimetric problem, Applied Mathematics, Riesz–Caputo fractional derivative, Riesz-Caputo fractional derivative, Calculus of variations
Isoperimetric problem, Applied Mathematics, Riesz–Caputo fractional derivative, Riesz-Caputo fractional derivative, Calculus of variations
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 44 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |