
In this paper, we explore natural connections among trigonometric Lie algebras, (general) affine Lie algebras, and vertex algebras. Among the main results, we obtain a realization of trigonometric Lie algebras as what were called the covariant algebras of the affine Lie algebra $\widehat{\mathcal{A}}$ of Lie algebra $\mathcal{A}=\frak{gl}_{\infty}\oplus\frak{gl}_{\infty}$ with respect to certain automorphism groups. We then prove that restricted modules of level $\ell$ for trigonometric Lie algebras naturally correspond to equivariant quasi modules for the affine vertex algebras $V_{\widehat{\mathcal{A}}}(\ell,0)$ (or $V_{\widehat{\mathcal{A}}}(2\ell,0)$). Furthermore, we determine irreducible modules and equivariant quasi modules for simple vertex algebra $L_{\widehat{\mathcal{A}}}(\ell,0)$ with $\ell$ a positive integer. In particular, we prove that every quasi-finite unitary highest weight (irreducible) module of level $\ell$ for type $A$ trigonometric Lie algebra gives rise to an irreducible equivariant quasi $L_{\widehat{\mathcal{A}}}(\ell,0)$-module.
31 pages
Mathematics - Quantum Algebra, FOS: Mathematics, Quantum Algebra (math.QA), Representation Theory (math.RT), Mathematics - Representation Theory
Mathematics - Quantum Algebra, FOS: Mathematics, Quantum Algebra (math.QA), Representation Theory (math.RT), Mathematics - Representation Theory
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
