Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advances in Mathemat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Mathematics
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2016
Data sources: Lirias
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advances in Mathematics
Article . 2016 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2016
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2013
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Homotopy moment maps

Authors: Callies, Martin; Fregier, Yael; Rogers, Christopher; Zambon, Marco;
Abstract

Associated to any manifold equipped with a closed form of degree >1 is an `L-infinity algebra of observables' which acts as a higher/homotopy analog of the Poisson algebra of functions on a symplectic manifold. In order to study Lie group actions on these manifolds, we introduce a theory of homotopy moment maps. Such a map is a L-infinity morphism from the Lie algebra of the group into the observables which lifts the infinitesimal action. We establish the relationship between homotopy moment maps and equivariant de Rham cohomology, and analyze the obstruction theory for the existence of such maps. This allows us to easily and explicitly construct a large number of examples. These include results concerning group actions on loop spaces and moduli spaces of flat connections. Relationships are also established with previous work by others in classical field theory, algebroid theory, and dg geometry. Furthermore, we use our theory to geometrically construct various L-infinity algebras as higher central extensions of Lie algebras, in analogy with Kostant's quantization theory. In particular, the so-called `string Lie 2-algebra' arises this way.

Final version will appear in Advances in Mathematics. Results concerning equivariant cohomology strengthened. In particular, we exhibit the explicit relationship between equivariant de Rham cocycles of arbitrary degree and homotopy moment maps. 62 pages. Comments are welcome. arXiv admin note: text overlap with arXiv:1402.0144 by other authors

Country
Belgium
Keywords

Mathematics - Differential Geometry, math.AT, General Mathematics, Equivariant cohomology, math-ph, FOS: Physical sciences, multisymplectic geometry, 0101 Pure Mathematics, moment map, math.MP, Momentum maps; symplectic reduction, FOS: Mathematics, Algebraic Topology (math.AT), 4901 Applied mathematics, 4902 Mathematical physics, Mathematics - Algebraic Topology, Mathematical Physics, Multisymplectic geometry, Science & Technology, math.SG, GEOMETRY, COURANT ALGEBROIDS, String and superstring theories; other extended objects (e.g., branes) in quantum field theory, Mathematical Physics (math-ph), equivariant cohomology, math.DG, Differential Geometry (math.DG), Mathematics - Symplectic Geometry, Physical Sciences, 4904 Pure mathematics, Strong homotopy Lie algebra, Symplectic Geometry (math.SG), Moment map, strong homotopy Lie algebra, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%
Green
hybrid