<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We investigate the singularity formation of a 3D model that was recently proposed by Hou and Lei in [16] for axisymmetric 3D incompressible Navier-Stokes equations with swirl. The main difference between the 3D model of Hou and Lei and the reformulated 3D Navier-Stokes equations is that the convection term is neglected in the 3D model. This model shares many properties of the 3D incompressible Navier-Stokes equations. One of the main results of this paper is that we prove rigorously the finite time singularity formation of the 3D inviscid model for a class of initial boundary value problems with smooth initial data of finite energy. We also prove the global regularity of the 3D inviscid model for a class of small smooth initial data.
33 pages
Mathematics(all), Mathematics - Analysis of PDEs, Nonlinear nonlocal system, Incompressible Navier–Stokes equations, FOS: Mathematics, Finite time singularities, Incompressible Navier–Stokes equations, 510, Analysis of PDEs (math.AP)
Mathematics(all), Mathematics - Analysis of PDEs, Nonlinear nonlocal system, Incompressible Navier–Stokes equations, FOS: Mathematics, Finite time singularities, Incompressible Navier–Stokes equations, 510, Analysis of PDEs (math.AP)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |